
Journal of Fluorescence, Vol. 7, No. 3, 1997 

Autoreconvolution An Extension to the "Reference 
Convolution" Procedure for the Simultaneous Analysis of 
Two Fluorescence Decays from One Sample 
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A fast and simple method of analyzing fluorescence decay data collected using the time-correlated 
single-photon counting technique is presented. The technique is related to the "reference convo- 
lution" method and is applicable to systems characterized by groups of fluorescence decays which 
are interrelated such that each can be fitted by a sum of exponentials which differs only in preex- 
ponential factors from that descriptive of another in the set. Suitable cases include mono- 
mer/excimer systems, fluorescence anisotropy decay analysis, and heterogeneous emission systems. 
The advantages of this method are discussed with examples of its application. 
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INTRODUCTION 

The technique of time-correlated single-photon 
counting (TCSPC)O~ is a powerful detection tool for 
studying the photophysics of excited electronic states of 
molecular species. However, fluorescence decay data 
collected using this method are distorted by a number 
of factors inherent in the technique. Perhaps the most 
serious of these problems is the finite width and sub- 
structure of the instrument response function. The stan- 
dard practice to overcome this difficulty has been to 
collect a fluorescence decay at the desired emission 
wavelength and then collect an instrument response 
function at the excitation wavelength by collecting ex- 
citation light scattered from a dilute suspension of a non- 
fluorescent diffuse scattering solution such as Ludox 
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(colloidal silica) or nondairy whitener/2~ This instrument 
response function (IRF) is assumed to be identical to the 
response one would obtain at the experimental emission 
wavelength used in the experiment and is then used in 
a deconvolution or reconvolution procedure to recover 
the desired kinetic parameters. This practice, although 
convenient, suffers from inherent drawbacks due to (i) 
the time shift (and possible shape change) of the instru- 
ment response profile as a function of wavelength,O-5> 
(ii) the count rate dependence of instrument response 
functions obtained using microchannel plate photomul- 
tiplier tubes, (6> (iii) having to change the sample cuvette 
between sample and scatterer with associated difficulties 
in certain circumstances (such as temperature-dependent 
experiments employing bulky cryostats), and (iv) prob- 
lems with fitting the leading edges of decays 

One effective method of overcoming at least some 
of these problems is the "reference convolution" tech- 
nique, ~7) in which a fluorescence decay, collected from a 
reference compound, is used instead of an instrument re- 
sponse function in the convolution procedure. The refer- 
ence convolution method relies on the ability to find a 
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suitable reference compound, i.e., one which absorbs and 
fluoresceses at the same wavelengths as the sample under 
investigation and whose fluorescence decay is exponen- 
tial. This method still requires the changing of cuvettes 
and has other associated problems in temperature-depen- 
dent studies and other experiments such as time-resolved 
evanescent wave-induced fluorescence spectroscopy 
(TREWIFS),C 8) in which it is difficult to replace the sam- 
ple reproducibly with a reference compound. 

The convolution of one fluorescence decay with an- 
other from the same sample has been attempted only 
rarely, partly because it was not thought to produce 
meaningful results. In this paper we discuss the possi- 
bility of analyzing some types of fluorescence decay 
curves using a procedure closely related to the reference 
convolution method but which involves the iterative re- 
convolution of  two decays collected from the s a m e  sam-  
ple, either decays from different wavelength regions 
(such as in a monomer/excimer system) or decays cor- 
responding to emission with polarization parallel and 
perpendicular to the polarization of the excitation light 
in anisotropy experiments. We show that, in certain cir- 
cumstances, the true fluorescence lifetimes or rotational 
correlation times can be recovered. 

Lakowicz and Baiter ~9.~~ have used a similar ap- 
proach, called differential-wavelength deconvolution, to 
analyze fluorescence decays. This method has been used 
on data collected from a tryptophan derivative in which 
solvent relaxation effects caused complex fluorescence 
decay behavior. ~9~ In that work, the decay collected from 
the blue side of the emission band, corresponding to flu- 
orescence from the initially excited state, was assumed 
to follow a single-exponential functional form and was 
then used in the convolution procedure when analyzing 
the decays collected at wavelengths more to the red of 
the emission band, corresponding to emission from the 
solvent relaxed state. In a second paper, c~~ the method 
was tested on the excited-state protonation of acridine 
and the excited-state deprotonation of 2-naphthol. 

The convolution kinetics approach (t~) is another 
method of fluorescence decay curve analysis which uses 
the decay profile corresponding to emission from one 
species (the monomer) in the analysis of another species 
which emits in another wavelength region (the excimer). 
The fluorescence decay of  the exeimer is then assumed 
to be described by the convolution of the monomer de- 
cay with a single-exponential decay. Transient effects, 
caused by the diffusion-controlled nature ofexcimer for- 
mation, can also be taken into account in this method 
by including a time-dependent rate coefficient in the 
convolution function. 02) 

A related method for the analysis of fluorescence 
anisotropy decays is the so-called "impulse reconvolu- 
tion ''cj3,t4~ approach, in which the experimental decays, 
collected with an emission polarization analyzer set par- 
allel,/ll(t), and perpendicular, I• (t), to the plane of po- 
Iarization of the excitation light, are used to generate 
sum [l,(t) =/tl(t) + 2" Ia(t)] and difference [Ia(t) = / l l( t)  

- 1• decay profiles. A convenient model function 
(e.g., a sum of exponentials) is used in iterative recon- 
volution with the instrument response function to fit the 
Is(t ) data. The resultant fitting function (the impulse re- 
sponse function) [/~(t)] is then combined with an appro- 
priate model for the anisotropy function, r(t) (e.g., a 
single-exponential for an isotropic rotor), and the prod- 
uct r(t)  �9 I~(t) compared to Ia(t). The fitting parameters 
within the trial function chosen for r(t) are then adjusted 
iteratively in a nonlinear minimization procedure to yield 
the desired relaxation information. 

The method, that of autoreconvolution, described in 
this paper is a little more general than the techniques men- 
tioned above and is applicable to systems in which two 
fluorescence decays collected from the same sample can 
be modeled by a sum of exponentials which differ only 
in preexponential factors, i.e., the decay rate constants are 
the same for each decay. Each decay must also be rep- 
resented by the same number of exponential terms in the 
fitting function. Suitable cases include simple mono- 
mer/excimer systems, fluorescence anisotropy decay anal- 
ysis, and even mixtures of noninteracting chromophores. 
The autoreconvolution approach is also less susceptible 
to leading-edge fitting problems and is far more conven- 
ient than the standard reference convolution method for 
temperature-dependent studies and TREWIFS. We 
consider this method a useful complementary technique 
to the rigorous method of "second-generation" global 
analysis, in which many decays (rather than just two) can 
be analyzed simultaneously, and para/neters linked 
through an assumed mathematical relationship. ('5,'6) 

THEORETICAL BACKGROUND 

Fluorescence decay data collected using the TCSPC 
technique can be distorted significantly by the finite 
width and substructure of the detection system's re- 
sponse. In such cases the measured decay profiles, l ( t) ,  
are actually a convolution of the instrumental response 
function, P(t) ,  with the true fluorescence decay, F(t):  

I ( t )  = P ( t )  ( ~  F ( t )  (1) 

f 
t 

= o P ( t ' ) "  F ( t  - t ' ) d t '  
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where (~) indicates a convolution and t' is a "dummy" 
time variable. 

To derive the true decay profile, F(t), the effect of 
P(t) must be removed, or deconvolved from 1(0, and 
several methods by which Eq. (1) can be solved have 
been developed, with varying degrees of success, ver- 
satility, and computational complexity. Descriptions and 
critical comparisons of some of these methods as applied 
to TCSPC data appear in the literature, ":7-~9) with the 
most popular method being that of nonlinear least- 
squares iterative reconvolution (NLLSIR). The popular- 
ity of this method is due to its reliability and its ability 
both to resolve closely spaced decay times and to fit any 
chosen section of the decay curve with no loss of ac- 
curacy. In the NLLSIR method, the detection system's 
measured intensity-time profile (IRF), P(t), is not first 
deconvoluted from the measured decay but is, instead, 
convoluted with the trial function chosen for the excited- 
state decay, F(t). The resultant profile is then compared 
to the measured experimental decay curve, l(t). This 
convolution fitting procedure is repeated by adjusting the 
parameters in such a way as to minimize (usually using 
the Levenburg-Marquardt algorithm (2~ the value of 
the reduced chi square, ~ ,  defined as the weighted sum 
of the squares of the deviations of the experimental 
points from the calculated fitting function. 

n2  

w~ [I(t,) - F(t,)] 2 
/ = n  I 

x~ = (2) 
n 2 - - n  I 4- 1 - - p  

In Eq. (2), n~ and n: are the first and last channels of 
the section of the decay to be analyzed with p adjustable 
parameters, w, is the weighting factor of channel i, 
which, since photon counting error is Poisson-distrib- 
uted, (22-24) is given by w, = 1 / ~ .  

An element of  uncertainty accompanies the tradi- 
tional NLLSIR method: it is assumed that the wave- 
length dependence of the instrument response function, 
P(t, A), can be reduced to negligible proportions. P(t, A) 
is a composite entity encompassing the excitation pulse 
profile, E(t, Z), the photomultiplier response, D(t, A), and 
the response of the remaining TCSPC electronics, K(t). 
The general practice is to assume that the wavelength 
dependence of D(t, A) is greater than that of E(t, A) and 
the excitation prompt, P(t, A,~), recorded at the emission 
wavelength chosen for analysis of the fluorescence is 
taken to represent P(t) in the reconvolution procedure. 
This is straightforward with flashlamp or synchrotron 
excitation sources but the limited tunability of pulsed 

lasers can pose problems. In the latter instance it is cus- 
tomary to use P(t, A~), recorded at the excitation wave- 
length, to represent P(t). 

In most cases, the validity of the assumption P(t, 
h,x) = P(t, hem ) is questionable due to the well-known 
wavelength dependence of the temporal position and 
shape of instrument response functions obtained with 
most photomultiplier tubes, t3-~) While this effect is re- 
portedly less prevalent for microchannel plate photo- 
multipliers, t25~ it does still occur and other problems 
(such as count rate dependence) t6) are often encountered. 
Furthermore, curve fitting over the entire time range of 
a decay curve is often difficult, especially when using 
microchannel plate (MCP) photomultiplier tubes, the rise 
time of which is often very fast when long decay times 
(>300 ps) are recorded. The Grinvald and Steinberg t22) 
approximation assumes that the histogram IRF is a good 
representation of the true IRF, however, with fast-rise 
time IRFs, this is not always the case and the shift 
parameter often does not work properly. The ability of 
the autoreconvolution method to overcome these prob- 
lems is one of its most attractive features. 

The reference convolution method has, in recent 
years, gained popularity due to its success in overcoming 
some of the problems mentioned above regarding the 
standard iterative reconvolution procedure with an in- 
strument response function. It has even been used suc- 
cessfully in association with global analysis 
techniques:) In the reference convolution method, the 
trial function for the excited-state decay is assumed to 
be a sum of n exponential terms and the fluorescence 
decay from a reference compound is used in the iterative 
reconvolution procedure in place of the IRF. The fluo- 
rescence decay of the reference compound, Ir(t , A,m), 
must be known to follow a single-exponential function 
(which is not always easy to prove on short time scales) 
with decay constant ~, and furthermore, k r must not be 
equal to any of the rate constants in the trial function 
(i.e., k r q: k,). The observed fluorescence decay profiles 
are then given by Eqs. (3) and (4). 

l(t, k~m) = P(t) | ~ A, exp [-kit]  (3) 
i = 1  

L (t, Xom) = P(t) | A, exp [-k,t]  (4) 

By taking the ratio of the Laplace transforms of 
these equations, the IRF term can be removed from the 
problem and the rate coefficients of interest, k~, can be 
recovered successfully by fitting the resulting function (7) 
[Eq. (5)] to the experimental data. 
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l(t ,  kin) = 4 (t, hE,,) 2_L A, + 4 (t, hem) 
,-,  (5) 

The situation under discussion in this paper is when 
two decays, II(t) and I2(t), are collected from the same 
sample, either decays from different wavelength regions 
(Aem, and A,,~, such as in a monomer/excimer system) or 
decays corresponding to emission with polarization ori- 
ented in planes parallel (11) and perpendicular (_1_) to the 
polarization of  that of the polarized excitation light, in 
anisotropy work. This method is valid solely for systems 
in which fluorescence decays can be fitted by a sum of 
exponentials which differ only in the magnitude of the 
preexponential factors, i.e., all lifetimes are the same, 
and each decay is represented by the same number of 
exponential terms in the fitting function. The two mea- 
sured fluorescence decays can then be summarized by 
Eqs. (6) and (7). 

/, (/, x~., or II) = f ' o  p ( r )  . F, (t - t') d f  (6) 

= P(t) Q ~ A, exp [-k, t ]  
t z I  

f: 12 (t, x~ 2 or •  = P ( r )  . f2  (t - r ) d r  (7) 

= P(t) (~) ~ B, exp [ -k , t ]  

Taking the Laplace transforms of  Eqs. (6) and (7) 
reduces the convolution to a simple multiplication, giv- 
ing 

L[It(t)] = L[P(t,X~O] �9 Z A, (8) 
i = l  

L[Iu(t)] = LIP(t,  k.~)] �9 Z B, (9) 
i w  I 

where L represents the Laplace transform operator and 
s is the Laplace transform variable of  t. Division of  Eq. 
(9) by Eq. (8) removes the L[P(t, A=,)] term, and after 
rearrangement the problem becomes one of  either (i) 
finding the inverse Laplace transform of the right-hand 
side of  Eq. (10) or (ii) predicting a solution, taking its 
Laplace transform, and equating this with the right-hand- 
side of  Eq. (10). 

L [I2(t)] = ~. B, (10) 
L[I~(t)] J" (s + kj). ~ [A/(s + k,)] 

Adopting the second of  these methods, and by anal- 
ogy with the solution in L6froth's paper, a) a trial func- 
tion for the solution of  this problem is one of the form 
L[G(t)] + or, and it has been found empirically (see 
Appendix) that Eq. (11) is a satisfactory solution for 
G[(t)]. 

n - - I  

G(t) = ~ 13, exp (-~/,t) (11) 
~=1 

Summarizing Eq. (1 I), if two decays which con- 
form to the criteria discussed above are analyzed using 
this technique (i.e., where one decay is used in place of 
the IRF), the analytical function required to fit the data 

n - - I  

would be of  the form ]~/3, exp(-T,  t) + ot [i.e., it would 
t = l  

consist of  a constant term, a, plus a sum of exponentials 
with one fewer exponential term than would be the case 
if the conventional method (iterative reconvolution with 
an IRF) was used on each decay individually]. While in 
principle this procedure is applicable for any value of  n, 
bi- and triexponential functions represent the vast ma- 
jority of  common experimental situations. Consequently, 
we have concerned ourselves in this paper only with 
situations where n < 3. In any case, meaningful inter- 
pretation of results from the use of  multiexponential 
functions with n > 3 is often difficult and the validity 
of the use of such functions is questionable. Further- 
more, the association of  the parameters recovered from 
the analysis method under discussion here, /3i and T,, 
with the "true" decay parameters, A, and % for n > 3 
is extremely complex and difficult to justify. This, how- 
ever, does not detract from the success of this method 
for cases of n < 3. 

In order to associate the parameters obtained from 
this method with the " true" decay parameters, Eq. (12) 
must be solved: 

L[G(t)] + ot =, ]~ 13, + ot 
(12) 

= ~ B~ 

' "  ( ,  + + k,)] 
t= l  

The solutions to Eq. (12) are derived in the Appen- 
dix for the specific cases of  n = 2 and n = 3. While 
the approach shown is not mathematically rigorous, a 
pattern for the fit and 3', terms is recognizable as n in- 
creases, and a generalization of  this pattern which is sim- 
ple to write down is being sought. The term for a, 
however, can be generalized as given in the Appendix. 
This parameter can be included as a scattered light or 
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variable baseline term in many existing iterative recon- 
volution software packages. 

In the following sections we examine these rela- 
tionships in some detail and present results obtained us- 
ing this technique to analyze fluorescence decay data 
simulated to mimic anisotropy decay data, mono- 
mer/excimer systems, and triple-exponential decays. We 
have also had considerable success using this method on 
data from real monomer/excime~ TM and anisotropy de- 
cay ~7~ systems. We compare these results with those ob- 
tained using the conventional (iterative reconvolution 
procedure with an IRF) method and discuss in detail the 
advantages and limitations of the autoreconvolution ap- 
proach. 

RESULTS AND DISCUSSION 

Decay curves were generated by convolving vari- 
ous sums-of-exponential functions, F(t) (as detailed be- 
low), with experimentally recorded instrument response 
profiles of various time calibration factors, using the 
convolution integral [Eqs. (6) and (7)]. Computer-gen- 
erated Poissonian noise was then added to the resultant 
decay curves in order to provide suitable statistics for 
the fitting routines3 o The decay constants used in the 
simulation of the decay curves were chosen to mimic 
typical experimental situations such as fluorescence an- 
isotropy and monomer/excimer systems. Examples are 
quoted where simple kinetics apply and in which the 
method can be used to demonstrate the plausibility of 
the resulting "fitting function(s)." In other cases we 
demonstrate how the technique can show that the as- 
sumed kinetic solution is invalid. 

Fluorescence Anisotropy Analysis 

Time-resolved fluorescence anisotropy measure- 
ments involve the measurement of  the observed fluores- 
cence intensity profiles,/tl(t) and I , ( t ) ,  detected, at right 
angles to the direction of vertically polarized excitation 
using a polarizing analyzer element, aligned in a parallel 
and perpendicular orientation, respectively, to the polar- 
ization vector of  the exciting radiation. Following exci- 
tation using a delta-function, the parallel and 
perpendicular fluorescence intensity components for a 
chromophore exhibiting a single-exponential fluores- 
cence decay and undergoing an idealized first-order ro- 
tational reorientation process would decay according to 
Eqs. (13) and (14), respectively, in which kf is the 
first-order rate constant for the total fluorescence decay 
(= 1/% where ,r e is the fluorescence lifetime), kr is the 

rate constant governing the rotational relaxation of the 
chromophore (= 1/'rr, where "rr is the rotational correla- 
tion lifetime), and ro is the "intrinsic anisotropy" ob- 
served in the absence of  rotational relaxation. 

/ll (t) = e - * f '  (1 + 2roe-*r' ) = e-*r  + 2roe-t*r+~" (13) 

I~ ( t )  = e -*r  (1 - roe-kr ') = e-*~ - roe-~*f+*, '' (14) 

The time-dependent emission anisotropy, r( t ) ,  is 
given by Eq. (15) and, in the simple case under discus- 
sion here, is related to the rotational correlation time by 
Eq. (16). 

r ( t )  = [11 ( t )  - I• ( t )  (15) 
/IL (t) + 21j. (t) 

r ( t )  = roe -* , '  (16) 

The various methods of  extracting % values from 
fluorescence anisotropy data and the advantages and 
drawbacks of these techniques have been discussed in 
detail elsewhere? 28,29) Suffice it to say that there are nu- 
merous problems associated with most methods of anal- 
ysis, and an alternative, reliable method is required. The 
pair of Eqs. (13) and (14) conforms to the requirements 
of the autoreconvolution technique discussed above, 
namely, they involve the same number of exponential 
terms (n = 2) with the same two rate constants, kf and 
(k~ + kr), and only the preexponential factors differing, 
and so it is an ideal candidate for investigation via this 
technique. 

Decays intended to mimic typical fluorescence an- 
isotropy data obtained from a small rotor were generated 
using Eqs. (13) and (14). The values used for ro, k~, and 
kf in the simulation are summarized in Table I. The re- 
sulti'ng/rE(t) and I ~ ( t )  decays were normalized appropri- 
ately prior to the artificial noise being added and 
assuming the instrumental " G  factor" to be unity. Fig- 
ure 1 shows the simulated decay profiles and the best fit 
resulting from a single-exponential autoreconvolution 
analysis of the I •  data using Eq. (17). 

I. (t) = y 1 I (t)- [3- exp ( -~( t  - t ' ) ) d t '  + e~I I ( t )  (17) 
o 

In this procedure/ll(t) is used along with an appro- 
priate trial function in an iterative reconvolution of I=~(t) 
in which/ll(t) adopts a role analogous to that of the IRF 
in fitting an observed fluorescence profile, I(t), contam- 
inated with scattered light [the a/ll(t ) term in Eq. (17) 
being analogous to the "scatter correction term," c P ( t ) ,  

which would be incorporated into the latter type of 
"fit"]. The results obtained from this analysis are sum- 
marized in Table I. 
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Table I. Parameters Used and Recovered in the Test of the Method on Simulated Anisotropy Data " 

Value used in 
simulation using Eqs. 

(13) & (14) Predicted value 

Recovered value for 
parameter using 

l(t) = 13 exp(-~O + a 

Parameter calculated 
from recovered value and 

using Eqs. (18) & (19) 

ro = 0.4 o~ = 0.3333 et = 0.327 ro = 0.406 
k~ = 1.18 (ns -~) 3, = 2.10 (ns -~) ~/ = 2.10 (ns -t) k, = 1.667 (ns -~) assuming 

kr = 1.18 (ns -z) 
k2 = (1/%) + (1/%) = 2.84 (ns- ')  

[where I/r, = 1.66 (ns-t)] 

"Decay curves were simulated according to Eqs. (13) and (14) (where k~ =kt,/q=kr+k~) and normalized according 
to At = 50,000 (counts), A~ = 40,000 (counts), B~ = 50,000 (counts), and B~ = -20,000 (counts). 

AutocorrelationlJ~a IL_,. At}tA~ il,,[LlJd~ ,kl lilt, ~ J ,  , Ahu,ILJ.I~I,, 
ofResidualsrlll ~| 'v~t~I~[~"ltrfll!qll ' l l  IWlu~-' I I [ ~  ' p ' ~ " ~  

Residuals I .b..km.hlit~,i~lbta.~.~. ot '~l~.ti~lh~A,h~h,dJ ~I/dl|d[. 
I 

Intensity (counts3 ~- .,,. 
60000 

"lu (t) 
.'... 

40OO0 " \  

0 ~ 
o 1 2 i i 

Time (ns) 

Fig. 1. Simulated parallel, /i,(t), and perpendicular, l ,(t),  decays for 
anisotropy analysis. The solid line is the resultant best fit to l• using 
autoreconvolution with /ll(0 in place of  the IRF, as summarized in 
Table I. 

1 and the decays tail match, thus indicating that there is 
indeed a relationship among AI, A2, BI, and By 

It is apparent from the details shown in Table I that 
the predicted values are in fact recovered. It is particu- 
larly pleasing to note the ability of the technique to re- 
cover the correct r o value directly from a single fitting 
parameter. This technique has been used with success 
recently on experimental anisotropy data obtained from 
fluorophore-labeled polymers in dilute solution, c27) where 
it compared favorably with the impulse reconvolution 
procedure. 

In the case of anisotropy data, the IRF is the same 
in both cases, and therefore the autoreconvolution 
method is ideal. It is also possible to reverse the analysis, 
i.e., analyze/it(t) using l• as the "response function" 
in the autoreconvolution procedure, and the method still 
works. However, the interpretations of Eqs. (A5) and 
(A6) will differ from Eqs. (18) and (19). 

Equations (A5) and (A6) derived in the Appendix 
can be readily transformed to give expressions (18) and 
(19) specific to the case in point, from which values for 
r o and % (= 1/k,) can be calculated if'rf (= 1/kf) is known 
from an independent experiment (e.g., from analysis of 
the magic angle decay) or from analysis of the sum de- 
cay,/~(t). 

(1 - ro) G 
ot = (18) 

1 + 2 t o  

k,+ kr+ 2rokf 
~/ = (19) 

1 + 2 r 0  

When A~, A2, BI, and B2 are related, it is possible 
to use the values of ot and 13. When no relationship ex- 
ists, i.e., two arbitrary decays, then only the ~/term car- 
ties useful information. In the case presented here, G = 

Analysis of Monomer/Exeimer Systems 

A further example of the usefulness of this method 
of analysis is the case of monomer/excimer systems. In 
this section we consider three common situations that 
can arise in such systems. First, we consider an ideal 
monomer/excimer system that follows Birks' kinetic 
scheme.OO) Second, we consider the case where a rate 
parameter in the monomer decay does not quite corre- 
spond to either rate parameter in the excimer decay. This 
illustrates the power of this analysis method in deter- 
mining whether or not a simple kinetic scheme is ap- 
propriate. Finally, we consider the case in which the two 
preexponential factors of the excimer decay are not 
equal and opposite as predicted by Birks' kinetic 
scheme. These circumstances are common in cases 
where fluorescence decays are collected from synthetic 
aromatic polymers and their model compounds, o1-33) 
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Table lla. Parameters Used and Recovered in the Test of the Method on Simulated 
Monomer/Excimer Data for the Case of  Ideal Birks' Kinetics" 

Value used m 
simulation using eqs. 

(20)&(21)  

Predicted value for 
parameter using 

l(t) = 13exp(-'Vt) + a 

Recovered value for 
parameter using 

l(t) = [3exp(-'V/) + a 

k~ = 1.57 X 10" (s -~) 
k, = 4.37 X 10 v (s- ')  

a = 0.0 a = 0.0 
~/ = 0.05476 (ns- ')  ~/ = (1/18.28) = 0.05470 (ns -t) 

I~ = 0.o44 

"Simulated curves were normalized according to A, = 46,000 (counts), A2 = 5000 
(counts), B, = -100,000 (counts), and B 2 = 100,000 (counts). 

Autoeorrelation I [.A ^ki . . . . .  ~ I  ~h , . . ,  h~^&..~ . ,~dl .~ l  I ~, ,^ ~kl, 
of Residuals ~/IvI~IV I~!f . . . .  v ~ r r v ~ ,  lVrlV pTrv'vl~xlw'lvN~ 

] ..aJ,kU,* alhldgr ,.ub.a,,du.lltl~, J,IJaha,.J~L.J.l~.lttl~,..~l, 
Restduals I ~rW" ."q"7 p~'r "~r '.W~'rqrw"-r..,~"l PrP 'v '' 

Intensity (counts) 
40000" 

30000" excimer 

20000. \ 
\ 

10000' 

o, 2'o 4b 60 go 160 
Time (ns) 

Fig. 2. Simulated monomer, lm(t), and excimer, l~(t), decays for the 
case of perfect Birks' kinetics [refer to Eqs. (19) and (20)]. The solid 
line is the resultant best fit to I~(t) using autoreconvolution with l,,(t) 
in place of  the IRF, as summarized in Table IIa. 

Simple Kinetic Scheme 

In monomer/excimer systems, an ideal system is 
one which follows the kinetic scheme proposed by Birks 
et aI., (3~ in which the monomer, Ira(t), and excimer,/,(t), 
decay profiles are predicted to be described by Eqs. (20) 
and (21), respectively: 

I~, (t) = A," exp ( - k , t )  + As" exp ( - k2 t )  (20) 

I,(t) = B, " exp ( - k ~ t )  - Bz " exp ( -kz t )  (21) 

where the k's, A's,  and B's  consist of combinations of 
the various rate constants in the reaction scheme.OO) Of 
course in the case of  Birks' kinetics, B~ = Bz, since no 
excimers exist at t = 0. In order to test the method under 
discussion here, two decay curves were synthesized as 
above using the parameters given in Table IIa and ana- 
lyzed with a standard NLLSIR program using the mon- 
omer decay in place of the instrument response function. 
As predicted by Eq. (11), a single-exponential function 

was required to fit the data satisfactorily (Fig. 2). The 
values obtained for a, /3, and 7 from this analysis are 
also given in Table IIa. Again, from Eqs. (A5) and (A6), 
terms in a, /3, and y can be expressed as in Eqs. (22)- 
(24), from which it can be seen that in a system which 
follows Birks' kinetic scheme perfectly (i.e., B, = B2), 
a should equal zero when the autoreconvolution is car- 
ried out using the monomer decay in place of the IRF: 

Ba - B2 
a = ~ (22) 

dl + Az 

Aik2 + A2k~ 
= (23) 

dl +Az 

Bik2 - Bzk , 
[3 + a ~  - (24) 

AI +A2 

It should be noted that, unlike the anisotropy case, 
in which the the number of excitation photons incident 
on the sample is attempted to be kept the same for the 
two decays through some form of excitation intensity 
integrator, polarizer "toggling," or use of T-geometry 
(with matched detectors), monomer/excimer decay pairs 
are often collected to the same number of counts in the 
channel of the maximum intensity or for the same col- 
lection time. This means that there is usually no fixed 
scaling factor between the preexponential factors A and 
B, and so the cx and [3 terms [Eqs. (22) and (24)] provide 
no useful information in this case. 

While deriving values for the two rate parameters 
k, and kz relies on knowledge of  the preexponential fac- 
tors A~, A 2, and B~ (=]B2]), the technique can obviously 
be used to verify the applicability of Birks'-type kinetic 
scheme, merely from the value of a, which should equal 
zero for the present case as mentioned above. It is, in 
fact, because cx = 0 that the derivation of  values for kt 

Compare this with the opposite case, i.e., when the excimer decay is 
used in place of the IRF, in which case a ---> ~ and computational 
problems will arise. 
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Table  l ib .  Parameters Used and Recovered in the Test of  the Method on Simulated 
Monomer/Excimer Data for the Case of  Nonideal Birks' Kinetics Where the Rate 
Parameters Are Not Consistent Between the Monomer and the Excimer Decays* 

Predicted and recovered 
Value used in values for parameters using 

simulation 1(0 = 13~exp(-'yTt) + ~2exp(-'y2 t) + ot 

kin, = 1.57 x lO s (s -~) 

k~ = 5.48 • 107 (s- ' )  

k~ = 4.38 • 107 (s -~) 

= 0.0 
3'1 = 6.48 • 107 (s -t) 

~/2 = 4.38 x 107 (s -z) 

13 z = 1.06 • 10 ~ 

13~ = 1.16 X 10 s~ 

a = 0.0 

~ = (1/15.2) = 6.58 • 107 (s - ' )  

~/2 = (1/22.7) = 4.41 • 107 (s -z) 

13~ = 0.0223 

13~ = 0.0278 

~Simulated curves were normalized according to Aj = 46,000 (counts), A 2 = 5000 
(counts), B~ = -100,000 (counts), and B 2 = I00,000 (counts). 

bObtained numerically. 

and k 2 is so problematic. If  the preexponential factors 
are known from individual analyses of the monomer and 
excimer curves, then more reliable estimates of the rate 
parameters can be obtained from autoreconvolution 
since this technique is analogous to "global analysis" 
in that both decays are being used simultaneously in the 
analysis. Autoconvolution is, therefore, a useful comple- 
mentary technique to other analysis methods, in addition 
to being able quickly to identify whether Birks' kinetic 
scheme is valid for a given system. 

Non-Birks' Kinetics 

Situations in which fluorescence decays can be fit- 
ted satisfactorily by the simple scheme summarized by 
Eqs. (17) and (18) have proven to be extremely rare, 
especially in the field of synthetic aromatic polymers and 
their model compounds. Otken, more complicated decay 
fitting functions requiting sums of more than two ex- 
ponential terms are required. Commonly even when dou- 
ble-exponential functions are adequate, discrepancies 
exist between the rate parameters recovered from indi- 
vidual analyses of decays collected from the monomer 
and excirner spectral regions, i.e., k~, ~: kc, o r / ~  :/: 
k~, or even more commonly, the preexponential factors 
of the decay function for the excimer analysis [Eq. (20)] 
are not equal and opposite in sign. Here we address these 
two cases and show that autoreconvolution provides a 
quick and convenient method of  checking the validity of 
Birks' kinetic scheme to a particular system. 

The Case where kin, =/k,, (or km: =/ke~). If  one of 
the rate parameters is not consistent between the two 
analysis functions [Eqs. (19) and (20)], one of the re- 
strictions inherent in the autoreconvolution technique is 
violated, which we should be able to identify. To illus- 
trate this, two decay curves were synthesized as above 

using the parameters given in Table lib and analyzed in 
the same wa), as in Simple Kinetic Scheme (above). In 
contrast to the case of ideal Birks' kinetics discussed 
above, a single-exponential function was inadequate to 
fit the data satisfactorily (based on the usual goodness- 
of-fit criteria, e.g., • = 3.648, Durbin-Watson param- 
eter = 0.484; see plots of weighted residuals and 
autocorrelation in Fig. 3a), but a double-exponential 
function is shown to be adequate (Fig. 3b). This would 
be expected, as it is a trivial case of three common decay 
times with some preexponential factors being zero (see 
Triple-Exponential Analysis, below). The entries for 13 I 
and 132 in column 2 of Table IIb are obtained numeri- 
cally, whereas those in column 3 are those returned from 
the analysis. The difference in the 13~:132 ratios of the 
entries in column 2 compared with those in column 3 
further indicates the failure of the method when the in- 
herent assumptions of the technique are invalid. In the 
context of the discussion here, this analysis serves no 
useful function other than illustrating the power of the 
autoreconvolution technique to discriminate between 
cases of Birks' kinetics and cases when the kinetic 
model breaks down. 

The Case where B1 r B2. The other common vi- 
olation of Birks' kinetic scheme is where the preexpo- 
nential factors in the decay function for the excimer 
region [Eq. (20)] are not equal and opposite, i.e., BI :~ 
B2. To illustrate this, two decay curves were synthesized 
using the parameters given in Table IIc and analyzed as 
above. A single-exponential function, with the param- 
eters given in Table IIc, was adequate in this case (X 2 
= 0.97, DW = 1.973; plot not shown), however, the 
parameter did not equal zero. This behavior is as pre- 
dicted from Eq. (11) we have not violated any of the 
inherent assumptions of the autoreconvolution tech- 
nique, only the predictions of Birks' kinetic scheme, and 
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Fig. 3. Simulated monomer, Ira(t), and excimer, It(t), decays for the 
case of non-Birks' kinetic behavior where the rate parameters are in- 
consistent between the two decays. Two sets of weighted residuals and 
autocorrelation plots are shown for the case of (a) a single-exponential 
analysis function and (b) a double-exponential analysis function. The 

solid line is the resultant best fit using the double-exponentml auto- 
reconvolutmn with lm(t) in place of  the IRF, as summarized in Table 
IIb. 

from Eq. (A5) the magnitude of a is predicted to be 
proportional to the difference between ]Bd and [B21. 

The examples given above illustrate the power of 
the autoreconvolution technique in discrimination be- 
tween the various situations commonly encountered in 
the study of monomer/excimer systems that can be dif- 
ficult to resolve from individual analysis of either the 
monomer or the excimer decay. 

and excimer regions. In such cases global analysis of all 
the decays is considered mandatory since, if monomer 
and excimer decays are analyzed individually, it is often 
difficult to correlate decay constants between the two 
regions. The autoconvolution technique provides a quick 
and independent method for the simultaneous analysis 
of decays from the two emission regions to determine 
whether a model based on three common decay con- 
stants is appropriate [Eqs. (25) and (26)]. 

3 
I,(t) = Z A, exp (-k, t)  (25) 

t=l 

3 
I2(t) = Z B, exp (-k, t )  (26) 

t = l  

Extending the test of the autoreconvolution method 
to the n = 3 case, two triple-exponential decays were 
generated according to Eqs. (24) and (25). The param- 
eters used are summarized in Table III, and were chosen 
in order to mimic the parameters observed from a typical 
system. In this case, the curve with the shorter overall 
decay was used in place of the IRF in the iterative re- 
convolution of the longer decay. As predicted from Eq. 
(11), a double-exponential function and associated " a  
term" were required to fit the data (Fig. 4). The resultant 
parameters are also reported in Table III. The analytical 
forms of a, ~/,, and "/2 are given in the Appendix. The 
analytical forms for [31 and [32 could also be written but 
are too unwieldy. However, by putting the obtained nu- 
merical values of et, ~ ,  "Y2, A~, and k, into Eq. (A15), 
two simple equations can be solved to obtain [3~ and [32 
(see Table III, in which it is seen that the ratio of the 
predicted [3 values is the same as the [3 ratio obtained 
experimentally, unlike the case summarized in Table 
IIb). 

CONCLUSIONS 

T r i p l e - E x p o n e n t i a l  A n a l y s i s  

Time-resolved fluorescence decays observed from 
many systems cannot be analysed on the basis of double- 
exponential functions. For example, fluorescence decays 
from the monomer and excimer emission regions of 
many synthetic aromatic polymer systems have required 
sums of three, four, or even five exponential terms. Even 
systems in which the fluorescence decay behavior might 
intuitively be expected to be less complicated such as 
bichromophoric moleculesC34) have required triple-expo- 
nential functions to describe the decays adequately as a 
function of the emission wavelength across the monomer 

We have shown here that if two fluorescence de- 
cays are measured that can be described by functional 
forms given by Eqs. (6) and (7), then one decay can be 
used in the iterative reconvolution analysis procedure in 
place of an instrument response function. The procedure 
described, termed "autoreconvolution," which reduces 
to the case of "reference convolution ''(7) when one de- 
cay is given by Eq. (4), is not as restrictive as the latter 
technique. It is shown here that for few enough expo- 
nential terms in the fitting function, physically meaning- 
ful parameters can still be recovered, and the IRF can 
be dispensed with. With the exception of when EBt = 
0, the order of the convolution does not matter, i.e., 
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Table lie. Parameters Used and Recovered in the Test of the Method on 
Simulated Monomer/Excimer Data for the Case of Nonideal Birks' Kinetics 
Where the Rate Parameters Are Consistent Between the Monomer and the 

Excimer Decays, but the Preexponential Factors in the Excimer Decay Are Not 
Equal and Opposite = 

Predicted and recovered values for parameters 
Value used in simulation using l(t) = 13 exp(-3't) + et 

k, = 1.57 X 108 (s-') 
k z = 4.37 x 107 (s-') 

et = 0.216 a = 0.172 
3' = 0.0548 (ns-') 3' = (1/18.$) = 0.0546 (us-~) 

13 = 0.0443 

*Simulated curves were normalized according to A~ = 46,000 (counts), A2 = 5000 
(counts), B~ = -90,000 (counts), and B 2 = 101,000 (counts). 

Table IlL Parameters Used and Recovered in the Test of the Method on 
Simulated Triple-Exponential Decay Data " 

Predicted and recovered values for parameters 
Value used in simulation using l(t) = 13~exp(-3'J) + 13,.exp(-3"2t) + ct 

k I = 1.0 X 10 I~ (s-') 
kz = 3.33 X 10 ~ (s-') 
k3 = 1.I1 X 109 (s-') 

o( = 0.3506 
3't = 3.876 (ns-') 
% = 1.203 (ns-') 
13j = 9.96 • 10 "h 
[32 = 3.98 • 10 ~ 

et = 0.3452 
~ = (1/0.257) = 3.891 (ns -~) 
% = (1/0.826) = 1.210 (ns -~) 

13, = 0.0040 

13, = 0.0016 

"Simulated curves were normalized according to A~ = 140,000 (counts), A2 = 
12,000 (counts), A 3 = 2000 (counts), B= = 20,000 (counts), B 2 = 24,000 (counts), 
and B3 = 10,000 (counts). 

~Obtained numerically. 

AutoeorrelationlaL.. Ill,. lLhk I. ~Ji,.t~Ah ..... Jh, ~ , .abu u d~t. 
of Residuals[ ~ r ~ ' ~ l " l u ~ r ~  ~qlWrVt/" " T r ~  " 1 ~ '  'Io'r~ "II~r 

Residuals ~,lJh~ ,..1~=1 a,llg, a=l. ,~l.,u.Lu..,~b ...... ~ .  ~r ,u.Jh..U 

Intensity (counts) .,. 
100000 .'-', 

. ' :  
80000 

60000 ' " 

40000 

20000 

0 0.4 0.8 1'.2 1'.6 2'.0 
Time (as) 

Fig. 4. Simulated triple-exponential decays [Eqs. (24) and (25)]. The 
solid line is the resultant best fit using a double-exponential autore- 
convolution with the shorter-lived decay in place of the IRF, as sum- 
marized in Table III. 

e i ther  decay  can  be used  in p l ace  o f  the IRF. H o w e v e r ,  

it should  be  noted  that the constants  a ,  y, and ot are 

di f ferent  in each case. Fo r  the s imples t  cases, such as 

the f luorescence  anisotropy and B i rks '  k inet ics  examples  

given,  the individual  parameters  can  be  eva lua ted  with  

a h igh  accuracy.  In fact, this t echn ique  has been  used 

successful ly  on real f luorescence  an iso t ropy  data as re- 

por ted  p r e v i o u s l y F  7) In the m o r e  compl i ca t ed  sys tems 

(e.g., n = 3, or  where  Bi rks '  k inet ic  s c h e m e  is not  valid),  

the au toreconvolu t ion  technique  is l imi ted  to conf i rming  

whe the r  the under ly ing  assumpt ion  that  the two decays  

can be  descr ibed  by funct ions  wi th  the same number  o f  

terms and wi th  the same decay  constants  is valid.  This  

makes  the technique  a v e r y  useful  c o m p l e m e n t a r y  anal- 

ysis m e t h o d  in complex  systems.  

The  m e t h o d  descr ibed  has the  f o l l o w i n g  addit ional  

advantages.  It  is re la ted to g loba l  analysis  in that both  

decays  are ana lyzed  s imul taneous ly  and the parameters  

are therefore  linked. It ut i l izes ex is t ing  i terat ive recon-  

vo lu t ion  sofi-ware 6 and invo lves  f e w e r  fit t ing parameters  

than analysis  o f  decays  individual ly .  In  addit ion,  it has 

Provided that the software does not normalize the IRF (decay) as 
some programs do in order to calculate the preexponential factors in 
units of counts. 
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proven to be far more immune to leading-edge fitting 
problems than many other analysis techniques. It is use- 
ful for experimental situations where reliable instrument 
response functions can be difficult to record, such as in 
temperature-dependent work, time-resolved evanescent 
wave-induced fluorescence measurements, and ultrafast 
pump-probe studies such as transmission or fluorescence 
upconversion. While this method cannot be considered 
a replacement for existing analysis methods, it has been 
found to be extremely useful for certain situations and 
as a complementary method in some other cases. 

APPENDIX: DERIVATION OF A SOLUTION TO 
EQ. (10) 

Adopting the method of  predicting a solution to Eq. 
(10), taking its Laplace transform, and equating with the 
right-hand side of Eq. (10), we use the analogy with the 
solution in L6froth's paper ~7~ and employ a trial function 
of the form L[G(t)] + a, with G(t) taking the form 

n - - I  

G(t) = ~ [3, exp ( -260  (A1) 
i = l  

Now, taking the Laplace transform of G(t) and 
equating with the right-hand side of Eq. (I0), the prob- 
lem becomes one of  solving A2. 

L[G(t)] + oc = L k '=' [3, exp (- 'y , t )  + a 

n - - I  

= ,=t ~ [ [3s-'-~%] (A2) 

[B,/(s + 
_ _  3 = 1  

. /=1  

As discussed in the text, the majority of  real ex- 
perimental situations is concerned with cases where n _< 
3, so here we derive expressions only for n = 2 and n 
= 3 .  

n = 2  

From Eq. (A2), 

[3 s(B2 + B2) + B t ~  + Bzk t 
- -  + oc = (A3) 
s + "y s(A~ + A2) + A l k  a + A2k I 

Rearranging gives 

a s  + ([3 + a ~ )  = [s(B,  + B:) 

s -; 

B I k 2 + B 2 N k ' ] / [  A ' k z + A 2 k ' ]  (14) 

+ I " +  ( A , + 1 2 )  1 

The relationships between the a, /3, and y terms 
and the A, B, and k terms can be derived readily from 
(A4) since both sides of (A4) are in the same general 

(as  + b~. 
form ~, s----~c / 

B~ + B2 
a = ~ (A5) 

AI +A z  

.y = Ark2 + A2kl 
(A6) 

AI +A2 

Bik2 + B2kl 
(A7) 

At +A2 
[3 + a-r = 

and by substitution of (A5) and (A6) into (A7), we ob- 
tain 

(A, + A2)(B,k, " + B,_k~) - (B, + B~)(A~k 2 + A,_k,) ~= 
(Ai + A~) 2 

(A8) 

Thus, for the simple case of n = 2, analytical re- 
lationships between the oc, 13, and "y terms and the A~ and 
B~ terms exist. 

n = 3  

Again, from Eq. (A2), 

[3t [32 
~ + ~ + o t  
s + ~ / t  s + ~ h  

( Bt + B2 + B3 ) /  

s + k~ s + k 2 s + k 3 

s + k2 s + k3 

the two sides of which can be rearranged to give 

~s'  + C~("/, + ~ )  + [3, + ~2]s + "/,[3~ + `/,13, + ~"/,"/~ 

(A9) 

s 2 + s(y~ + "/2) + Yt "12 

s (BI + B2 + B3) 

s [B, (~  + k~) + &, (k, + lq) + S~ (k, + 2)]  + 
(A~+A2+A3) 
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+ B'k2k3 + B2k'k3 + B 3 k ' k : ~ /  (A10) 

(AI + A2 + A3) 1 /  

s[A, (~2 +/q) + & (k, + / q )  + A3 (kl + k2)] 
S .4- 

(At + A2 + A3) 

-}- Alk2k3 dff A 2 k l k 3  ..~ A3klk2 ~ 
(A, -7- 

While  far more laborious and less physical ly  appli-  

cable, the relationships between the a,  /3, and 3' terms 
and the A, B, and k terms can be derived in a fashion 

analogous to that used for n = 2, since both sides o f  
(A10) are in the same general  form as one another (as 2 

+ bs + c)/(s 2 + ds + e): 

81 "t'- B 2 "I- B 3 
a = [ A l l ]  

A 1 "4- A 2 "4- A 3 

Also,  from (A10) it is seen that by solving the fol- 
lowing two expressions simultaneously,  terms for TI and 

T2 can be obtained: 

[.4, (k 2 + k3) + A: (k, + k3) + A3 (k, + k.)] 
~h +~ /2  = (A t + A2 + A 3  ) 

"/I ~t2 ---- (,4 t "t" A 2 "4- A3) 

(A12) 

The terms for 3'1 and T2 are actually given by the 
two roots o f  the fol lowing quadratic equation (AI3) :  

[Al(k 2 "-{- k3) 3!- A2(k, + k3) + A3(k, + ~)] .,/2 _ ~/ 

+ 

[,41 -t- A 2 "t- A3] 

[ A , ~  + A~k,~ + & ~ k l ]  = 0 
[A1 + A 2 + A 3 ]  

(A13) 

(X -+ ~/(-X') a - 4(At + A2 + A3)(A,k~IB + A2k, k~ + A,k,l~)) 

,t,,,, = (2 (A, + A, + A,)) 

(A14) 

where 

X = A l ~  + A I k  3 + A2k I + A2k 3 + A3kl + A 3 ~  

Note that % and ~/2 are dependent  on k~ and A~ only, 

i.e., they are independent  o f  BI, B2, and B3. Note,  also, 

that ~/1 and ~/2 are independent  o f  the magnitudes o f  A1, 

A2, and A3 and depend only on the relat ive magnitudes.  

Similarly, from (A10) it is seen that by  solving the 
fol lowing two expressions simultaneously, terms for/31 

and/32 can be obtained: 

= [8,~k~ + 8:k,k~ + 8,k,~l 
(,4, + A 2 + A3) (A15) 

a (~, + w )  + 13~ + 135 

= [8, (~. + k,) + ~ (k, + k,) + 8,  (k, + k~)l 
(A. + A z + A3) 

While these equations can be solved for 131 and/32 , 
the solutions are even more unwieldy than (A14) but can 

be solved numerically. 
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